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Abstract
The Fisher–Shannon information and a statistical measure of complexity are
calculated in position and momentum spaces for the wavefunctions of the
quantum isotropic harmonic oscillator. We show that these quantities are
independent of the strength of the harmonic potential. Moreover, for each level
of energy, it is found that these two indicators take their minimum values on
the orbitals that correspond to the classical (circular) orbits in the Bohr-like
quantum image, just those with the highest orbital angular momentum.

PACS numbers: 31.15.−p, 05.30.−d, 89.75.Fb

In recent years, the study of statistical quantities on quantum systems has been increasing in
interest [1, 2]. Different indicators that have been developed in the framework of information
and complexity theories, for instance, Fisher and Shannon information [3–5], and statistical
measures of complexity [6, 8] have been calculated for several systems under different
approaches [9–15]. The probability densities characterizing the state of a quantum system are
defined in position and momentum spaces [16, 17]. From here, the calculation of all those
statistical indicators can be performed with a low computational cost.

The dependence of these quantities on the quantum numbers of the system can reflect the
hierarchical organization of that quantum system. Even for states with the same energy it is
possible to have different values of these statistical quantities. Take, for instance, the H-atom.
It has been shown [18] that for a given energy the minimum values of the Fisher–Shannon
information and statistical complexity are reached for the highest allowed orbital angular
momentum for that energy. This means that a variational process on these statistical measures
can select just those orbitals that in the pre-quantum image are the Bohr-like orbits.

Following this insight, it is our aim in the present work to analyze if the above described
behavior of these statistical measures can also be found in the case of the isotropic quantum
harmonic oscillator.
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Let us start by recalling the three-dimensional non-relativistic wavefunctions of this
system when the potential energy is written as V (r) = λ2r2/2, where λ is a positive real
constant expressing the potential strength. Atomic units are used through the text. The
wavefunctions in position space (�r = (r,�), with r being the radial distance and � the solid
angle) are:

�n,l,m(�r) = Rn,l(r)Yl,m(�), (1)

where Rn,l(r) is the radial part and Yl,m(�) is the spherical harmonic of the quantum state
determined by the quantum numbers (n, l,m). The radial part is expressed as [10]

Rn,l(r) =
[

2n!λl+3/2

�(n + l + 3/2)

]1/2

rl e− λ
2 r2

Ll+1/2
n (λr2), (2)

where Lβ
α(t) are the associated Laguerre polynomials. The levels of energy are given by

En,l = λ(2n + l + 3/2) = λ(en,l + 3/2), (3)

where n = 0, 1, 2, . . . and l = 0, 1, 2, . . . . Let us observe that en,l = 2n + l. Thus, different
pairs of (n, l) can give the same en,l , and then the same energy En,l .

The wavefunctions in momentum space (�p = (p, �̂), with p being the momentum
modulus and �̂ the solid angle) are:

�̂n,l,m(�p) = R̂n,l(p)Yl,m(�̂), (4)

where the radial part R̂n,l(p) is now given by the expression [10]

R̂n,l(p) =
[

2n!λ−l−3/2

�(n + l + 3/2)

]1/2

pl e− p2

2λ Ll+1/2
n (p2/λ). (5)

Taking the former expressions, the probability density in position and momentum spaces,

ρn,l,m;λ(�r) = |�n,l,m(�r)|2, γn,l,m;λ(�p) = |�̂n,l,m(�p)|2, (6)

can be explicitly calculated. From these densities, the statistical complexity and the Fisher–
Shannon information are computed. We find that these quantities are independent of λ, the
potential strength. This non-trivial property is proved in appendix A. For this reason, we drop
the λ subindex in the densities from now and on. Also, for the sake of simplicity, the quantum
numbers (n, l,m) are omitted in the notation.

First, the measure of complexity C recently introduced by Lopez-Ruiz, Mancini and
Calbet [6–8], the so-called LMC complexity, is defined as

C = H · D, (7)

where H represents the information content of the system and D gives an idea of how much
concentrated is its spatial distribution. Let us recall at this point that C has been quantified in
different contexts (see [19] and references therein). It has been shown to be an useful indicator
to successfully discern many situations regarded as complex in systems out of equilibrium
[19]. Thus, C identifies the entropy or information H stored in a system and its disequilibrium
D, that in the discrete case is the distance from its actual state to the probability distribution
of equilibrium, as the two basic ingredients for calculating the complexity of a system. In
consequence, this quantity vanishes both for completely ordered and for completely random
systems giving then the correct asymptotic properties required for a well-behaved measure of
complexity.

For our purpose, in order to calculate C for the present continuous system, we take a
version used in [8] as a quantifier of H. This is the simple exponential Shannon entropy, that
in position and momentum spaces takes the form, respectively,

Hr = eSr , Hp = eSp , (8)
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(a) (b)

Figure 1. Statistical complexity in position space, Cr , and momentum space, Cp , versus |m| for
different energy en,l-values in the quantum isotropic harmonic oscillator for (a) en,l = 15 and (b)
en,l = 30. Recall that Cr = Cp . All values are in atomic units.

where Sr and Sp are the Shannon information entropies [4],

Sr = −
∫

ρ(�r) log ρ(�r) d�r, Sp = −
∫

γ (�p) log γ (�p) d�p. (9)

We keep for the disequilibrium the form originally introduced in [6, 8], that is,

Dr =
∫

ρ2(�r) d�r, Dp =
∫

γ 2(�p) d�p. (10)

In this manner, the final expressions for C in position and momentum spaces are:

Cr = Hr · Dr, Cp = Hp · Dp. (11)

The form of the wavefunctions, due to the harmonic interaction, allows us to show in
appendix A that these quantities, Cr and Cp, are the same.

In figure 1, Cr (or Cp) is plotted as a function of the modulus of the third component
m,−l � m � l, of the orbital angular momentum l for different l values with a fixed energy.
That is, according to expression (3), the quantity en,l = 2n + l is constant in each figure.
Figure 1(a) shows Cr for en,l = 15 and figure 1(b) shows Cr for en,l = 30. In both figures, it
can be observed that Cr splits into different sets of discrete points. Each one of these sets is
associated with a different l value. It is worth noting that the set with the minimum values of
Cr corresponds just to the highest l, that is, l = 15 in figure 1(a) and l = 30 in figure 1(b).

Other types of statistical measures that maintain the product form of C can be defined.
Let us take, for instance, the Fisher–Shannon information, P, that has been also applied in
[11, 15, 18] to quantum systems. This quantity, in position and momentum spaces, is given
respectively by

Pr = Jr · Ir , Pp = Jp · Ip, (12)

where the first factor

Jr = 1

2πe
e2Sr/3, Jp = 1

2πe
e2Sp/3, (13)

is a version of the exponential Shannon entropy [5], and the second factor

Ir =
∫

[ �∇ρ(�r)]2

ρ(�r) d�r, Ip =
∫

[ �∇γ (�p)]2

γ (�p)
d�p, (14)
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Figure 2. Fisher–Shannon information in position space, Pr , and momentum space, Pp , versus
|m| for different energy en,l-values in the quantum isotropic harmonic oscillator. for (a) en,l = 15
and (b) en,l = 30. Recall that Pr = Pp . All values are in atomic units.

is the so-called Fisher information measure [3] that quantifies the narrowness of the probability
density. Similar to the behavior of Cr and Cp, we also show in appendix A that Pr = Pp.

Ir can be analytically obtained in both spaces (position and momentum). The results are
[12]:

Ir = 4(2n + l + 3/2 − |m|)λ, (15)

Ip = 4(2n + l + 3/2 − |m|)λ−1. (16)

Let us note that Ir and Ip depend on λ, although the final result for Pr and Pp are non-λ-
dependent (see appendix A).

Figure 2 shows P as a function of the modulus of the third component m for different pairs
of (en,l = 2n + l, l) values. In figure 2(a), Pr (or Pp) is plotted for en,l = 15, and Pr is plotted
for en,l = 30 in figure 2(b). Here, Pr also splits into different sets of discrete points, showing
a behavior similar to that of C in figure 1. Each one of these sets is related to a different l
value, and the set with the minimum values of Pr also corresponds just to the highest l, that
is, l = 15 and l = 30, respectively.

Let us finish this paper with the conclusions. The statistical complexity and the Fisher–
Shannon information have been shown to be independent of the potential strength, λ. It is the
specific forms, (8), (10) and (13), (14), of the definitions of these two indicators that yield this
property. This fact could be an indirect argument to justify the choice of these expressions.
Then, these quantities have been calculated. We have taken advantage of the exact knowledge
of the wavefunctions. Concretely, we put in evidence that, for a fixed level of energy, let us
say en,l = 2n + l, these statistical quantities take their minimum values for the highest allowed
orbital angular momentum, l = en,l . It is worth remembering at this point that the radial part
of this particular wavefunction, that describes the quantum system in the (n = 0, l = en,l)

orbital, has no nodes. This means that the spatial configuration of this state is, in some way,
a spherical-like shell. In appendix B, the mean radius of this shell, 〈r〉n,l,m, is found for the
case (n = 0, l = en,l, m). This is:

〈r〉n=0,l=en,l ,m ≡ 〈r〉n=0,l=en,l
�

√
λ−1(en,l + 1)

(
1 + 


(
e−1
n,l

))
, (17)
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that tends, when en,l � 1, to the radius of the N th energy level, rN =
√

λ−1(N + 1), taking
N = en,l in the Bohr-like picture of the harmonic oscillator (see appendix B).

As it was remarked in [18], here we also obtain that the minimum values of the statistical
measures calculated from the wavefunctions of the quantum isotropic harmonic oscillator
select just those orbitals that in the pre-quantum image are the Bohr-like orbits. Therefore, we
conclude that our intuition is enhanced when using these quantities to discern complexity at a
quantum level.

Appendix A. Invariance of C and P under rescaling transformations

Here, we show that the statistical complexities Cr and Cp are equal and independent of the
strength potential, λ, for the case of the quantum isotropic harmonic oscillator. Also, the same
behavior is displayed by Pr and Pp.

For a fixed set of quantum numbers, (n, l,m), let us define the normalized probability
density ρ̂(�t):

ρ̂(�t) = 2n!

�(n + l + 3/2)
t2l e−t2 [

Ll+1/2
n (t2)

]2 |Yl,m(�)|2. (A.1)

From expressions (1), (2) and (6), it can be obtained that

ρλ(�r) = λ3/2ρ̂(λ1/2�r), (A.2)

where ρλ is the normalized probability density of expression (6). Now, it is straightforward to
find that

Hr(ρλ) = λ−3/2H(ρ̂), (A.3)

and that

Dr(ρλ) = λ3/2D(ρ̂). (A.4)

Then,

Cr(ρλ) = C(ρ̂), (A.5)

and the non-λ-dependence of Cr is shown.
To show that Cr and Cp are equal, let us note that, from expressions (4)–(6), the normalized

probability density γλ(�p) for the same set of quantum numbers (n, l,m) can be written as

γλ(�p) = λ−3/2ρ̂(λ−1/2 �p). (A.6)

Now, it is found that

Hp(γλ) = λ3/2H(ρ̂), (A.7)

and that

Dp(γλ) = λ−3/2D(ρ̂). (A.8)

Then,

Cp(γλ) = C(ρ̂), (A.9)

and the equality of Cr and Cp, and their non-λ-dependence are shown.
Similarly, from expressions (12), (13), (15) and (16), it can be found that Pr = Pp, and

that these quantities are also non-λ-dependent.
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Appendix B. Bohr-like orbits in the quantum isotropic harmonic oscillator

Here, the mean radius of the orbital with the lowest complexity is calculated as a function of
the energy. Also, the radii of the orbits in the Bohr picture are obtained.

The general expression of the mean radius of a state represented by the wavefunction
�n,l,m is given by

〈r〉n,l,m ≡ 〈r〉n,l = n!

�(n + l + 3/2)

1

λ1/2

∫ ∞

0
t l+1 e−t

[
Ll+1/2

n (t)
]2

dt. (B.1)

For the case of the minimum complexity (see figure 1 or 2), the state has the quantum numbers
(n = 0, l = en,l). The last expression (B.1) becomes:

〈r〉n=0,l=en,l
= (en,l + 1)!

�(en,l + 3/2)λ1/2
, (B.2)

that, in the limit en,l � 1, simplifies to expression (17):

〈r〉n=0,l=en,l�1 �
√

λ−1(en,l + 1)
(
1 + 


(
e−1
n,l

))
. (B.3)

We now proceed to obtain the radius of an orbit in the Bohr-like image of the isotropic
harmonic oscillator. Let us recall that this image establishes the quantization of the energy
through the quantization of the classical orbital angular momentum. So, the energy E of a
particle of mass m moving with velocity v on a circular orbit of radius r under the harmonic
potential V (r) = mλ2r2/2 is:

E = 1
2mλ2r2 + 1

2mv2. (B.4)

The circular orbit is maintained by the central force through the equation:

mv2

r
= mλ2r. (B.5)

The angular momentum takes discrete values according to the condition

mvr = (N + 1)h̄ (N = 0, 1, 2, . . .). (B.6)

Combining the last three equations (B.4)–(B.6), and taking atomic units, m = h̄ = 1, the
radius rN of a Bohr-like orbit for this system is obtained

rN =
√

λ−1(N + 1) (N = 0, 1, 2, . . .). (B.7)

Let us observe that this expression coincides with the quantum-mechanical radius given by
expression (B.3) when en,l = N for N � 1.

References

[1] Gadre S R and Bendale R D 1987 Phys. Rev. A 36 1932
[2] Chatzisavvas K Ch, Moustakidis Ch C and Panos C P 2005 J. Chem. Phys. 123 174111
[3] Fisher R A 1925 Proc. Camb. Phil. Soc. 22 700
[4] Shannon C E 1948 A mathematical theory of communication Bell Syst. Tech. J. 27 379

Shannon C E 1948 A mathematical theory of communication Bell Syst. Tech. J. 27 623
[5] Dembo A, Cover T A and Thomas J A 1991 IEEE Trans. Inf. Theory 37 1501
[6] Lopez-Ruiz R, Mancini H L and Calbet X 1995 Phys. lett. A 209 321
[7] Calbet X and Lopez-Ruiz R 2001 Phys. Rev. E 63 066116
[8] Catalan R G, Garay J and Lopez-Ruiz R 2002 Phys. Rev. E 66 011102
[9] Gadre S R, Sears S B, Chakravorty S J and Bendale R D 1985 Phys. Rev. A 32 2602
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